Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
3.
Curr Rheumatol Rev ; 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-2283535

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to spread around the world. Vaccinations have been administered globally and have been proven to be safe and effective. However, vasculitis has been reported as an adverse event occurring after COVID-19 vaccination. METHODS: In this review, we analyzed the literature to identify original articles that reported on patients who developed vasculitis following COVID-19 vaccination and summarized their clinical manifestations. PubMed and Web of Knowledge were searched to identify relevant studies. RESULTS: A total of 27 patients who developed vasculitis following COVID-19 vaccination were identified from 21 studies. The involved organs included the skin and kidney. The main clinical features of patients whose skin was affected were papules, maculopapular rashes, and plaques. Most of the patients exhibited small vessel vasculitis and single-organ vasculitis; these were resolved within one month. Patients whose kidneys were affected exhibited vasculitis, including anti-neutrophil cytoplasmic antibody glomerulonephritis and IgA nephritis. Most patients were treated with corticosteroid, rituximab, and cyclophosphamide, and one patient needed hemodialysis. The renal function of most patients was improved or recovered, but one patient needed maintenance dialysis. CONCLUSION: Vasculitis was rarely reported after COVID-19 vaccine administration. It often manifested as cutaneous small-vessel vasculitis or glomerulonephritis. Notably, when a patient demonstrates hematuria, proteinuria, and acute kidney injury after COVID-19 vaccination, there is a possibility that the patient could have developed vasculitis. Skin-related problems were quickly resolved, while kidney-related problems may progress to chronic kidney disease.

4.
Antiviral Res ; 212: 105556, 2023 04.
Article in English | MEDLINE | ID: covidwho-2269779

ABSTRACT

The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants. In naïve animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection against Delta and Omicron BA.1variants. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.


Subject(s)
COVID-19 , Animals , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Antibodies, Neutralizing , mRNA Vaccines , Antibodies, Viral , Vaccines, Inactivated
5.
Front Cell Infect Microbiol ; 12: 1040248, 2022.
Article in English | MEDLINE | ID: covidwho-2236776

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Retrospective Studies , Immunoassay , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
6.
Int J Radiat Oncol Biol Phys ; 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-2228873

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, many radiation oncology departments worldwide adopted the use of shorter and more intense hypofractionated regimens. Hospital foot traffic was reduced through virtual care. This study's primary objective was to assess the collective environmental impact of these strategic changes by identifying sources of carbon dioxide equivalents (CO2e). The rate of radiation-related adverse event from the increased use of hypofractionated treatments was assessed. METHODS: All patients treated with external beam radiation therapy from April 1, 2019 to March 31, 2021 at our single institution were identified (n=10,175) along with their radiotherapy visits (176,423 fractions), and unplanned visits to the radiation nursing clinic (RNC) or emergency (ER) department. Out-patient hospital and virtual visits (n=75,853) during this same period were also analyzed. Environmental impact measures, including linear accelerator power usage, patient travel distances, and personal protection equipment (PPE) consumption were all converted into CO2e. RESULTS: The use of curative hypofractionated regimens increased from 17% to 27% during the pandemic year. Carbon footprint was reduced by 39% during the pandemic year (1,332,388 kg CO2e) as compared to the pre-pandemic year (2,024,823 kg CO2e). Comparing patients in the pre-pandemic vs. pandemic year, there was a significant reduction in the proportion of hypofractionated patients who needed a visit to either the RNC (39% vs. 25%; p<0.001) or ER (6% vs. 2%; p<0.001) during and within 90 days of radiotherapy. DISCUSSION: This is the first study to demonstrate the environmental benefits of increased use of hypofractionated regimens and virtual care, while assuring that there was no added acute radiation-related adverse event. Our findings support their continued use as one of many long-term strategies to reduce the environmental footprint of healthcare delivery.

7.
The Journal of Risk Finance ; 24(1):72-88, 2023.
Article in English | ProQuest Central | ID: covidwho-2223034

ABSTRACT

Purpose>The purpose of this paper is to analyze the market response of the aerospace and defense industry and the airline industry to the ongoing conflict between Ukraine and Russia based on the sentiments from war-related news articles over the period from October 2021 to June 2022.Design/methodology/approach>The study uses the news article database of Global Database of Events, Languages and Tone (GDELT) to create a new set of variables that reflect the news sentiment regarding war and conflict. By investigating the newly created sentiment variables in combination with traditional event study methodology, the authors seek to find out whether sentiment indicators can be helpful to rationalize the evolution of the different stock markets before and after the conflict.Findings>The authors' results point out a significant negative impact of the war on the airline market and a positive impact on the defense market. The authors' study also introduces a new set of war-related news-based sentiment variables that is significant to explain the evolution of the two markets before and after the war. The relationships between this study's new set of variables and the performance of the two markets are also proven to be significantly impacted by the invasion.Originality/value>To the best of the authors' knowledge, this is the first research to use the news sentiment related to the topic of war and conflict to explain the market movement of different industries during the Ukraine invasion.

8.
Vaccines (Basel) ; 10(11)2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2110304

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with increased morbidity and mortality among kidney transplant recipients (KTRs). The administration of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is the only reliable strategy to prevent COVID-19 and alleviate the severity of COVID-19 in this particular population. The aim of this article was to evaluate the clinical protection by vaccines (breakthrough infections, deaths, and hospitalizations) in KTRs. There were 135 KTRs with COVID-19 breakthrough infections for whom patient-level data were available in PubMed and Web of Science. There was a male predominance (61.4%), 97 were given the standard vaccination regimen, and 38 received three or four doses of the vaccine. The median age was 59.0 (IQR: 49.0-69.0) years. A total of 67 patients were hospitalized, and 10 patients died. In 72.6% of cases, triple-maintenance immunosuppression was employed. The deceased patients were older than the survivors (p < 0.05); an age over 60 years was a risk factor for death (p < 0.05). The KTRs with booster vaccines had a longer time interval from the last vaccine to COVID-19 infection and lower hospitalization rates than the individuals who received the standard vaccination regimen (33.3% vs. 54.8%, p < 0.05). The hospitalized patients were older than the outpatients (p < 0.05). Among 16,820 fully vaccinated or boosted KTRs from 14 centers, there were 633 breakthrough infections (3.58%) and 73 associated deaths (0.41%). The center-level breakthrough infection rates varied from 0.21% to 9.29%. These findings highlight the need for booster doses for KTRs. However, more research is needed to define the long-term effectiveness and immunogenicity of booster doses and to identify methods to boost the protective response to vaccination in these immunocompromised patients.

9.
Anal Chim Acta ; 1238: 340634, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2120363

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a causal agent of Coronavirus Disease 2019 (COVID-19) has led to the global pandemic. Though the real-time reverse transcription polymerase chain reaction (RT-PCR) acting as a gold-standard method has been widely used for COVID-19 diagnostics, it can hardly support rapid on-site applications or monitor the stage of disease development as well as to identify the infection and immune status of rehabilitation patients. To suit rapid on-site COVID-19 diagnostics under various application scenarios with an all-in-one device and simple detection reagents, we propose a high-throughput multimodal immunoassay platform with fluorescent, colorimetric, and chemiluminescent immunoassays on the same portable device and a multimodal reporter probe using quantum dot (QD) microspheres modified with horseradish peroxidase (HRP) coupled with goat anti-human IgG. The recombinant nucleocapsid protein fixed on a 96-well plate works as the capture probe. In the condition with the target under detection, both reporter and capture probes can be bound by such target. When illuminated by excitation light, fluorescence signals from QD microspheres can be collected for target quantification often at a fast speed. Additionally, when pursuing simple detection without using any sensing devices, HRP-catalyzed TMB colorimetric immunoassay is employed; and when pursuing highly sensitive detection, HRP-catalyzed luminol chemiluminescent immunoassay is established. Verified by the anti-SARS-CoV-2 N humanized antibody, the sensitivities of colorimetric, fluorescent, and chemiluminescent immunoassays are respectively 20, 80, and 640 times more sensitive than that of the lateral flow colloidal gold immunoassay strip. Additionally, such a platform can simultaneously detect multiple samples at the same time thus supporting high-throughput sensing; and all these detecting operations can be implemented on-site within 50 min relying on field-operable processing and field-portable devices. Such a high-throughput multimodal immunoassay platform can provide a new all-in-one solution for rapid on-site diagnostics of COVID-19 for different detecting purposes.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Immunoassay , Pandemics , Horseradish Peroxidase , Antibodies, Viral
10.
Stem Cells ; 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2103099

ABSTRACT

Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for the potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview on recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Further, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics could be used for clinical treatment.

11.
Sci Rep ; 12(1): 18147, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2096806

ABSTRACT

Recently accumulated evidence implicates a close association of vitamin D (VitD) insufficiency to the incidence and clinical manifestations of the COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). Populations with insufficient VitD including patients with osteoporosis are more susceptible to SARS-COV-2 infection and patients with COVID-19 worsened or developed osteoporosis. It is currently unknown, however, whether osteoporosis and COVID-19 are linked by VitD insufficiency. In this study, 42 common targets for VitD on both COVID-19 and osteoporosis were identified among a total of 243 VitD targets. Further bioinformatic analysis revealed 8 core targets (EGFR, AR, ESR1, MAPK8, MDM2, EZH2, ERBB2 and MAPT) in the VitD-COVID-19-osteoporosis network. These targets are involved in the ErbB and MAPK signaling pathways critical for lung fibrosis, bone structural integrity, and cytokines through a crosstalk between COVID-19 and osteoporosis via the VitD-mediated conventional immune and osteoimmune mechanisms. Molecular docking confirmed that VitD binds tightly to the predicted targets. These findings support that VitD may target common signaling pathways in the integrated network of lung fibrosis and bone structural integrity as well as the immune systems. Therefore, VitD may serve as a preventive and therapeutic agent for both COVID-19 and osteoporosis.


Subject(s)
COVID-19 , Osteoporosis , Pulmonary Fibrosis , Vitamin D Deficiency , Humans , Vitamin D/therapeutic use , COVID-19/complications , Vitamin D Deficiency/epidemiology , SARS-CoV-2 , Molecular Docking Simulation , Pulmonary Fibrosis/drug therapy , Vitamins/therapeutic use , Osteoporosis/drug therapy
12.
BMC Med Ethics ; 23(1): 53, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1902384

ABSTRACT

BACKGROUND: Rapid ethical access to personal health information (PHI) to support research is extremely important during pandemics, yet little is known regarding patient preferences for consent during such crises. This follow-up study sought to ascertain whether there were differences in consent preferences between pre-pandemic times compared to during Wave 1 of the COVID-19 global pandemic, and to better understand the reasons behind these preferences. METHODS: A total of 183 patients in the pandemic cohort completed the survey via email, and responses were compared to the distinct pre-pandemic cohort (n = 222); all were patients of a large Canadian cancer center. The survey covered (a) broad versus study-specific consent; (b) opt-in versus opt-out contact approach; (c) levels of comfort sharing with different recipients; (d) perceptions of commercialization; and (e) options to track use of information and be notified of results. Four focus groups (n = 12) were subsequently conducted to elucidate reasons motivating dominant preferences. RESULTS: Patients in the pandemic cohort were significantly more comfortable with sharing all information and biological samples (90% vs. 79%, p = 0.009), sharing information with the health care institution (97% vs. 83%, p < 0.001), sharing information with researchers at other hospitals (85% vs. 70%, p < 0.001), sharing PHI provincially (69% vs. 53%, p < 0.002), nationally (65% vs. 53%, p = 0.022) and internationally (48% vs. 39%, p = 0.024) compared to the pre-pandemic cohort. Discomfort with sharing information with commercial companies remained unchanged between the two cohorts (50% vs. 51% uncomfortable, p = 0.58). Significantly more pandemic cohort patients expressed a wish to track use of PHI (75% vs. 61%, p = 0.007), and to be notified of results (83% vs. 70%, p = 0.012). Thematic analysis uncovered that transparency was strongly desired on outside PHI use, particularly when commercialization was involved. CONCLUSIONS: In pandemic times, patients were more comfortable sharing information with all parties, except with commercial entities, where levels of discomfort (~ 50%) remained unchanged. Focus groups identified that the ability to track and receive results of studies using one's PHI is an important way to reduce discomfort and increase trust. These findings meaningfully inform wider discussions on the use of personal health information for research during global crises.


Subject(s)
COVID-19 , Health Records, Personal , COVID-19/epidemiology , Canada , Follow-Up Studies , Humans , Informed Consent , Pandemics , Patient Preference
13.
Sci Adv ; 8(21): eabn3481, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1865136

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has become an immense global health crisis. However, the lack of efficient and sensitive on-site testing methods limits early detection for timely isolation and intervention. Here, we present a quantitative and ultrasensitive in situ immunoassay technology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in saliva (QUIT SARS-CoV-2). Our nanoporous membrane resonator generates a rapid oscillating flow to purify and concentrate fully intact SARS-CoV-2 virus in saliva by 40-fold for in situ detection of viral antigens based on chemiluminescent immunoassay within 20 min. This method can not only achieve a detection sensitivity below 100 copies/ml of virus, comparable to the bench-top PCR equipment; it can also improve detection specificity via direct monitoring of viral loads. The integrated portable QUIT SARS-CoV-2 system, which enables rapid and accurate on-site viral screening with a high-throughput sample pooling strategy, can be performed in primary care settings and substantially improve the detection and prevention of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Immunoassay , Saliva , Sensitivity and Specificity , Technology
14.
Lab Invest ; 102(8): 814-825, 2022 08.
Article in English | MEDLINE | ID: covidwho-1795821

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis. We developed a custom tissue microarray using regions of pathological interest and interrogated tissues via immunohistochemistry and in situ hybridization. Severe acute respiratory syndrome coronavirus 2 was detected in 16/21 patients, in cardiomyocytes, the endothelium, interstitial spaces, and percolating adipocytes within the myocardium. Virus detection typically corresponded with troponin depletion and increased cleaved caspase-3. Indirect mechanisms of injury-venous and arterial thromboses with associated vasculitis including a mixed inflammatory infiltrate-were also observed. Neutrophil extracellular traps (NETs) were present in the myocardium of all COVID-19 patients, regardless of injury degree. Borderline myocarditis (inflammation without associated myocyte injury) was observed in 19/21 patients, characterized by a predominantly mononuclear inflammatory infiltrate. Edema, inflammation of percolating adipocytes, lymphocytic aggregates, and large septal masses of inflammatory cells and platelets were observed as defining features, and myofibrillar damage was evident in all patients. Collectively, COVID-19-associated cardiac injury was multifactorial, with elevated levels of NETs and von Willebrand factor as defining features of direct and indirect viral injury.


Subject(s)
COVID-19 , Myocarditis , Autopsy , COVID-19/complications , Humans , Inflammation , Myocytes, Cardiac
15.
Atmospheric Chemistry and Physics ; 22(6):4201-4236, 2022.
Article in English | ProQuest Central | ID: covidwho-1771559

ABSTRACT

The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and particularly on nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established, understanding the details remains a challenge since multiple source categories contribute. In this study, a new method of isolation of three components (background NO2, NO2 from urban sources, and NO2 from industrial point sources) is applied to estimate the impact of the COVID-19 lockdown on each of them. The approach is based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Population density and surface elevation data as well as coordinates of industrial sources were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor over 261 urban areas for the period from 16 March to 15 June 2020 were compared with the average VCD values for the same period in 2018 and 2019. While the background NO2 component remained almost unchanged, the urban NO2 component declined by -18 % to -28 % over most regions. India, South America, and a part of Europe (particularly, Italy, France, and Spain) demonstrated a-40 % to -50 % urban emission decline. In contrast, the decline over urban areas in China, where the lockdown was over during the analysed period, was, on average, only -4.4±8 %. Emissions from large industrial sources in the analysed urban areas varied greatly from region to region from -4.8±6 % for China to -40±10 % for India. Estimated changes in urban emissions are correlated with changes in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic were one of the key elements in the decline in urban NO2 emissions. No correlation was found between changes in background NO2 and Google mobility data. On the global scale, the background and urban components were remarkably stable in 2018, 2019, and 2021, with averages of all analysed areas all being within ±2.5 % and suggesting that there were no substantial drifts or shifts in TROPOMI data. The 2020 data are clearly an outlier: in 2020, the mean background component for all analysed areas (without China) was -6.0%±1.2 % and the mean urban component was -26.7±2.6 % or 20σ below the baseline level from the other years.

16.
Vaccine ; 40(9): 1208-1212, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1757896

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in catastrophic damage worldwide. Accordingly, the development of powerful, safe, easily accessible vaccines with long-term effectiveness is understood as an urgently needed countermeasure against this ongoing pandemic. Guided by this strong promise of using AAVs, we here designed, optimized, and developed an AAV-based vaccines (including AAV-RBD(max), AAV-RBD(wt), AAV-2xRBD, and AAV-3xRBD) that elicit strong immune responses against the RBD domain of the SARS-CoV-2 S protein. These immunogenic responses have proven long-lived, with near peak levels for at least six months in mice. Notably, the sera immunized with AAV-3xRBD vaccine contains powerful neutralizing antibodies against the SARS-CoV-2 pseudovirus. Further evidence proven that potent specific antibodies could also be elicited in canines after vaccination with AAV-3xRBD vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Dogs , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics
18.
Clin Infect Dis ; 74(11): 1933-1950, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1704370

ABSTRACT

BACKGROUND: Post-vaccination myopericarditis is reported after immunization with coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. The effect of inadvertent intravenous injection of this vaccine on the heart is unknown. METHODS: We compared the clinical manifestations, histopathological changes, tissue mRNA expression, and serum levels of cytokine/chemokine and troponin in Balb/c mice at different time points after intravenous (IV) or intramuscular (IM) vaccine injection with normal saline (NS) control. RESULTS: Although significant weight loss and higher serum cytokine/chemokine levels were found in IM group at 1-2 days post-injection (dpi), only IV group developed histopathological changes of myopericarditis as evidenced by cardiomyocyte degeneration, apoptosis, and necrosis with adjacent inflammatory cell infiltration and calcific deposits on visceral pericardium, although evidence of coronary artery or other cardiac pathologies was absent. Serum troponin level was significantly higher in IV group. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen expression by immunostaining was occasionally found in infiltrating immune cells of the heart or injection site, in cardiomyocytes and intracardiac vascular endothelial cells, but not skeletal myocytes. The histological changes of myopericarditis after the first IV-priming dose persisted for 2 weeks and were markedly aggravated by a second IM- or IV-booster dose. Cardiac tissue mRNA expression of interleukin (IL)-1ß, interferon (IFN)-ß, IL-6, and tumor necrosis factor (TNF)-α increased significantly from 1 dpi to 2 dpi in the IV group but not the IM group, compatible with presence of myopericarditis in the IV group. Ballooning degeneration of hepatocytes was consistently found in the IV group. All other organs appeared normal. CONCLUSIONS: This study provided in vivo evidence that inadvertent intravenous injection of COVID-19 mRNA vaccines may induce myopericarditis. Brief withdrawal of syringe plunger to exclude blood aspiration may be one possible way to reduce such risk.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Chemokines , Cytokines , Endothelial Cells , Humans , Injections, Intravenous , Mice , RNA, Messenger , SARS-CoV-2 , Troponin , Vaccines, Synthetic , mRNA Vaccines
19.
Int J Infect Dis ; 116: 258-267, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693397

ABSTRACT

OBJECTIVE: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is scarce. DESIGN: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease (COPD), asthma, and healthy controls. RESULTS: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related pathways. CONCLUSIONS: This study provides fundamental data for identifying COVID-19-specific proteomic changes in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Critical Illness , Humans , Microfilament Proteins/metabolism , Proteomics , SARS-CoV-2 , Sputum
SELECTION OF CITATIONS
SEARCH DETAIL